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Phase synchronization in the perturbed Chua circuit
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We show experimental and numerical results of phase synchronization between the chaotic Chua circuit and
a small sinusoidal perturbation. Experimental real-time phase synchronized states can be detected with oscil-
loscope visualization of the attractor, using specific sampling rates. Arnold tongues demonstrate robust phase
synchronized states for perturbation frequencies close to the characteristic frequency of the unperturbed Chua.
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[. INTRODUCTION (piecewise linearresistorRy, . The perturbation applied to
the circuit is of the formy(t)=V sin(2#ft)=Im(vVe?7™),

Synchronization refers to events that happen at the sameghereV is the amplitude andlis the perturbation frequency.
time, as reported by Huygens in 16¥B|, describing peri- We use a Tektronix AFG320 function generator that is con-
odic self-sustained synchronous states between two pendoected in parallel to the resistorof the circuit. An Agilent
lum clocks. About three centuries later, a model proposed b5 670A dynamic signal analyzer is used to check the fre-
Arnold [2] demonstrated that small periodic perturbationsquencyf of the function generator, and also to measure the
can produce stable periodic states in quasiperiodically oscifrequencyf,, based on a time series \@f;. Data acquisition
lating systems. In the case of chaotic systems, it has beda performed using an AT-MIO 16E1 National Instruments
shown that a small, properly applied periodic perturbationpoard(12 bitg connected to a computer controlled by a soft-
can force chaotic oscillations to get in phase with the perturware developed inABvIEW . The dynamical variables of this
bation, while the amplitude of the system’s oscillation re-circuit are the tensioW, across the capacit@1, the ten-
mains chaotid3]. This phase synchronization effect can besion V., across the capacit€€2, and the currenit, across
viewed as a first step toward a more organized behavior ahe inductorL. Due to the almost planar geometry of the
chaos, eventually leading the chaotic system to a periodiRossler-like attractor, we acquire only the variablgs, and
state. Phase synchronization has become a major field &f-,, which contains all the important information of this
interest with much work and applicatiof].

Even though the extensive amount of study done on the @)
perturbed Chua circuifs], little is known about its phase
synchronization process. In this paper, we demonstrate, both
experimentally and numerically, that the properly paced
Chua system is able to sustain states of robust phase syn-
chronization with a periodic function. Moreover, the circuit Vcos(2nft)
oscillations remain phase synchronized for a range of
bounded parameter perturbations, as required for the imple-
mentation of a communication scheme with chaos using the
phase for encoding purposgsl.

We work with the chaotic oscillator in the single lobe =
regime (Rossler-like attractgr introduce the angle coordi-
nate fchua @S a state space variable, and regard it as the (b)
phase of the Chua circuit. For the phase of the sinusoidal
perturbation, we introducé, .., We say that the Chua and myI>
the pacer are phase synchronized when the phase difference !
A 0= Ochua— Opacer remMains bounded and small for all time |
(for details see Ref.7]). i

Il. EXPERIMENTAL SETUP

The perturbed Chua circuit and the characteristic curve of

the piecewise linear resist®are schematically shownin  FIG. 1. (a) The Chua circuit, andb) the piecewise linear char-
Fig. 1. This circuit is composed of two capacitofs, and  acteristic curve of the resist®,, . The perturbation introduced is
C,, two resistorsR andr, one inductor., and the nonlinear V sin(2aft).
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perturbed circuit. Th&y characteristic curve is mathemati-
cally represented by inr(Ve1)=mgVep+0.5(m;
—mo)[|Vc1+Bpl+|Ve1—Bpll, where, my=—0.539, m;
=—0.91, andB,= 1.2V are the experimental values.

We work with Rasler-like attractors by setting suitable
parameter values for the Chua circuit. The attractors can be
represented well by the two-dimensional trajectdfy, vs
V¢, that spirals around an unstable saddle focus. The pacer
can also be seen as a two-dimensional oscillator circling
around the same focus.

Ill. REAL-TIME DETECTION OF PHASE
SYNCHRONIZATION

Taking into account that both the chaotic circuit oscilla-

tion and the periodic function are basically two-dimensional 0841 V=1'°46m.v
rotations, the difference between their pha&#scan be rep- 1

resented by the stroboscopic mapping of the perturbed cir- 0.4

cuit. This is done taking samples af 1ime intervals, where < i

f is the frequency of the periodic perturbation. The more ;7‘3 0.0

compact the stroboscopic map, the less the variation of the ] 1
phase difference. We say that the perturbed circuit is phase 0.4 - .
synchronized with its perturbation if the stroboscopic map ] V=2.33mV 1
remains constrict within a limited region of the attractor. 08—
Thus, for the sake of the present work, we consider the cir- -4 2 0
cuit to be phase synchronized with the perturbation if the )

stroboscopic map does not fill out all the region of the phase
space in which the attractor lives in. In order to detect phase . .
synchronization, we have to check whether the stroboscopic F!G- 2. Experimental data withC,=0.0047uF, C,
mapping on the variable¥c; and V¢, sampled at fre- —0-052¢F, R=1596Q, L=9.2mH, andr=10Q. Gray lines
quencyf, is confined into a subregion of the projection of the "SPreSeMVcz vs Ve, and emply circles represent the stroboscopic
chaotic attractor on the plané:; vs Vc,. The characteristic mapping. In(a) n.Ot SXnChron'Zed W'th/.zo'695 mV, in(b) pha;;e
frequency of the unperturbed circuit fg=5.264 kHz. We synchronized withv=1.046 mV, and in(c) phased synchronized

. ’ ’ with V=2.33 mV. In all case$=f,=5.264 kHz.
start the search for phase synchronized states by stroboscopi-
cally sampling the unperturbed Chua at frequerieyf,. ) )
This is equivalent to starting with the pacer at frequeficy State of Fig. 2a), and the star and the triangle correspond to
=f, and amplitudeV. The result is depicted in Figs. 2, the phase synchronized states of Figk) 2nd Zc), respec-
where in(a) f=f, andV=0.695 mV. This amplitude value tively. Notice the different slopes of the two sides of the
is not enough to produce phase synchronization so the poinf@ngue, with the curved right-hand side.
of the stroboscopic mapping, represented as open circles, are

spread all over the attract@uictured as a continuous circling

gray line. As we increase the amplitude of the perturbation 3.0+

to, sayV=1.046 mV, while maintaining the frequency fat o5 1

=f,, phase synchronization is attained, as indicated in Fig. a

2(b). In this case, the stroboscopic mapping is confined to a _ 204

subregion of the attractor, and remains there for all time. For £ |

higher amplitude of perturbatioV(=2.33 mV), the strobo- Z 154

scopic mapping becomes more concentrdtaEk Fig. 2c)] 1 memuan
showing that the synchronization robustness increases with 1.0 Fo

the amplitude of perturbation. Figure 3 illustrates the param- 1 e

eter space oW/ X f, showing the triangular shaped area for 0.5 T T 1
which there is phase synchronization. We apply the tech- 5.248 5.256 5.264 5.272
nigue described above for detecting whether or not phase f(kHz)

synchronization occurs for a range of values of the amplitude

V and the frequency of the perturbation. We use 15 strobo-  FiG. 3. Filled squares represent values of the frequérmyd
scopic mappings with=6000 points each, for each value of the amplitudeV for which the experimental perturbed Chua circuit

V andf. The result is presented in Fig. 3, where the filledis phase synchronized with the perturbation. The open circle, the
squares correspond Yoandf values yielding phase synchro- star and the triangle show the parameter space position used in Figs.
nized states. The circle corresponds to the nonsynchronize2ja—g, respectively.
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FIG. 4. The numerically simulated Chua circuit with dimension- r

less variables. The gray lines represent assker-like attractor,
while the empty circles represent the stroboscopic mappings) In
without perturbation there is no synchronization.(b) perturbed
with f,=0.2801 andv,=0.0005 there is sychronization. (o) for
higher amplitude perturbatiok,=0.002 the stroboscopic map is
more concentrated.

FIG. 5. In (a) the black region represents values of the fre-
quencyf, and the amplitude/, for which the numerically simu-
lated perturbed Chua circuit phase synchronizes with the perturba-
tion. The open circle, the star and the triangle show the valu¥s of
andf, used to obtain the data shown in Figéa4qg, respectively.

In (b) a zooming view aroun®/,=0 andf,=0.2801 showing the
border of the synchronization tongue. The variables are dimension-
less.

The experimental oscillator of Fig. 1 can be modeled by
applying Kirchoff’s laws to the nodes of the circuit. The tinuous Rasler-like attractor. As expected, the spread of the
resulting state equations are given b@,(dVc,/dt) mapping around the attractor clearly indicates that the Chua
=(1R)(Vea—Ve1) —inr(Ve1), Co(dVe,/dt)=(1/R)(Vey  oscillator and the sinusoidal function are not phase synchro-
—Veo)+iL, andL(di_/dt)=—-V,—y(t), whereVs; and  nized. However, a completely different picture can be seen
V¢, are the voltage across the capacitGssandC,, respec- Wwhen we increase the amplitude of the perturbatiorVto
tively, andi, is the electric current across the inductoi=or ~ =0.0005, while keeping the frequencyfat= 0.2801. In this
convenience, we introduce the usual parameter rescaling thaase, with the result displayed in Figl the open circles
produces a set of dimensionless paramettgaoted with the  of the stroboscopic mapping are restricted to a bounded re-
subscriptr). We permit a slight modification of the rescaled gion of the attractor, and stay there for all time. The same
parameters due to fluctuations in the real experimental valsampling interval of 1/0.2801 has been applied for these
ues. Thus, the parameters used in the numerical simulation ofiappings. We see that without the perturbation there is no
the circuit of Fig. 1 areC,=0.1, C,,=1.0, L,=1/6, 1R, phase synchronization due to the phase diffusion of the cha-
=0.575, my,=—0.5, m;;=—0.8, andB,,=1.0. The char- otic Chua. ForV,=0.0005, we already obtain phase syn-
acteristic frequency of the Chua system for these parameterdironization as it is shown in Fig.(#). As shown for the
is fo,=0.2807, which corresponds to the main peak in theexperimental data, for higher amplitude of perturbatigp,
Fourier spectrunj7]. =0.002, the simulated stroboscopic map is also more con-

Initial testing indicates that phase synchronization can beentratedsee Fig. 4c)] confirming that the synchronization
achieved for lower amplitude values when the frequency igobustness increases with the amplitude of perturbation.
f,=0.2801, slightly different from the characteristig, In Fig. 5@), we show a 308 300 grid in parameter space
=0.2807. Our result fow,=0 is shown in Fig. 4), where of the perturbation frequendly and the perturbation ampli-
the stroboscopic mapping with sampling interval of 1/0.2801tude V,, showing in black square an Arnold-like tongue, a
is represented by the open circles plotted on top of the conregion for which phase synchronization occurs.

IV. SIMULATION
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The open circle, the star and the triangle correspond, reing frequency is close to the characteristic frequency of the
spectively, to the parameter settings of Figa-&). As we  chaotic oscillator. Robust phase synchronized states are
observed in the experimental tongue, see Fig. 3, there iachieved for larger pacing amplitudes, which suggests that
asymmetry between the left and the right borders of theoscillators such as the Chua may offer some advantages for
tongue. In Fig. ®), we present a zooming view arouigl information transmission. The Arnold tongues for the experi-
=0 andf,=0.2801 showing a detail of the tip of the syn- ment and the simulation are remarkably similar. In both
chronization tongue. cases, as we travel in thévs f parameter space, three dif-
ferent regions can be visited. Take, for example, the Arnold
tongue of Fig. 5. Suppose that we start at the left-hand side
- ) nonsynchronized positiofy =0.2793,V,=0.001, and move

The transition between phase synchronized and phasg the right, increasing, at constan¥/, . Eventually, we will
nonsynchronized states has been studied before. The scenawi@ch the positiorf, =0.279 85 close to the boundary be-
for the loss(or the achieving of phase synchronization is tween synchronization and nonsynchronization regions. As
equivalent to the losgor achieving of phase locking in & e continue with increasing values ffwe cross the bound-
quasiperiodic _o_SC|!Iat|on, where a saddle-node blfurcatlorhry, enter the region of phase synchronization, continue and
happens annihilating an attract¢node and a repeller | o5ch the vicinity of the other boundary fat=0.280 37. As
(saddlg [2]. In the case of states initially phase synchro-\ye continue, we cross this other boundary and travel again in
nized, synchronization is lost due to the collision of two setSnonsynchronization parameter space. Notice that the white
Dependlng on the partlcullar system the §ynchron|zat|on |°°Sr'egions to the left and to the right of the Arnold tongue
ing has also been described as a collision between an Upyrespond to parameter space values for nonsynchronized
stable set and an attrac{@], and as a collision between tWo giates. However, the left-hand side region corresponds to
unstable set9]. The tongue representing the parameter valacing frequencies lower than the characteristic frequency of
ues for phase synchronization has been studied in associatigq unperturbed Chua. The right-hand side region corre-
with chaotic system$10]. It is a consequence of the finite syongs to pacing frequencies larger than the characteristic
probablhty_of finding a rational periodic oscillation in a per- frequency of the unperturbed Chua. In one case the Chua is
turbed oscillator. In this sense, a very small perturbation aMpeing forced to slow down, in the other case it is forced to
plitude, in connection with the characteristic frequency of thespeed up. For parameter values at the center of the tongue
oscillator, is enough to lock the quasiperiodir chaoti9  ging to the left slows the oscillator down, going to the right
oscillations to the frequency of the forcing function. The gpeeds it up. It seems that the chaotic oscillator reacts not
finding of the Arnold tongue in both our experimental and gy acily in the same way regarding the transition in one di-
simulation Chua circuits clearly indicates that this probabil-;action as opposed to the transition in the other direction.
!ty is mde_ed finite. cher types of electronic circuits propluc_:--rhese two diverse physical scenarios may account for the
ing chaotic wave signals may also be used for transmissiofjfferences between the left-hand and right-hand sides of the
of phase-coded informatigri1]. Arnold tongue in both experimental and simulation cases.

V. PHASE SYNCHRONIZATION TRANSITION

VI. CONCLUDING REMARKS
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