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Phase synchronization in the perturbed Chua circuit
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We show experimental and numerical results of phase synchronization between the chaotic Chua circuit and
a small sinusoidal perturbation. Experimental real-time phase synchronized states can be detected with oscil-
loscope visualization of the attractor, using specific sampling rates. Arnold tongues demonstrate robust phase
synchronized states for perturbation frequencies close to the characteristic frequency of the unperturbed Chua.
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I. INTRODUCTION

Synchronization refers to events that happen at the s
time, as reported by Huygens in 1673@1#, describing peri-
odic self-sustained synchronous states between two pe
lum clocks. About three centuries later, a model proposed
Arnold @2# demonstrated that small periodic perturbatio
can produce stable periodic states in quasiperiodically os
lating systems. In the case of chaotic systems, it has b
shown that a small, properly applied periodic perturbati
can force chaotic oscillations to get in phase with the per
bation, while the amplitude of the system’s oscillation r
mains chaotic@3#. This phase synchronization effect can
viewed as a first step toward a more organized behavio
chaos, eventually leading the chaotic system to a perio
state. Phase synchronization has become a major fiel
interest with much work and applications@4#.

Even though the extensive amount of study done on
perturbed Chua circuit@5#, little is known about its phase
synchronization process. In this paper, we demonstrate,
experimentally and numerically, that the properly pac
Chua system is able to sustain states of robust phase
chronization with a periodic function. Moreover, the circu
oscillations remain phase synchronized for a range
bounded parameter perturbations, as required for the im
mentation of a communication scheme with chaos using
phase for encoding purposes@6#.

We work with the chaotic oscillator in the single lob
regime ~Rössler-like attractor!, introduce the angle coordi
nate uChua as a state space variable, and regard it as
phase of the Chua circuit. For the phase of the sinuso
perturbation, we introduceupacer. We say that the Chua an
the pacer are phase synchronized when the phase differ
Du5uChua2upacer remains bounded and small for all tim
~for details see Ref.@7#!.

II. EXPERIMENTAL SETUP

The perturbed Chua circuit and the characteristic curve
the piecewise linear resistorRNL are schematically shown in
Fig. 1. This circuit is composed of two capacitors,C1 and
C2, two resistorsR andr, one inductorL, and the nonlinear
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~piecewise linear! resistorRNL . The perturbation applied to
the circuit is of the formy(t)5V sin(2pft)5Im(Vei2p f t),
whereV is the amplitude andf is the perturbation frequency
We use a Tektronix AFG320 function generator that is co
nected in parallel to the resistorr of the circuit. An Agilent
35 670A dynamic signal analyzer is used to check the
quencyf of the function generator, and also to measure
frequencyf 0, based on a time series ofVC1. Data acquisition
is performed using an AT-MIO 16E1 National Instrumen
board~12 bits! connected to a computer controlled by a so
ware developed inLABVIEW . The dynamical variables of this
circuit are the tensionVC1 across the capacitorC1, the ten-
sion VC2 across the capacitorC2, and the currenti L across
the inductorL. Due to the almost planar geometry of th
Rössler-like attractor, we acquire only the variablesVC1 and
VC2, which contains all the important information of th

FIG. 1. ~a! The Chua circuit, and~b! the piecewise linear char
acteristic curve of the resistorRNL . The perturbation introduced is
V sin(2pft).
©2003 The American Physical Society12-1
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perturbed circuit. TheRNL characteristic curve is mathemat
cally represented by i NR(VC1)5m0VC110.5(m1
2m0)@ uVC11Bpu1uVC12Bpu#, where, m0520.539, m1
520.91, andBp51.2V are the experimental values.

We work with Rössler-like attractors by setting suitab
parameter values for the Chua circuit. The attractors can
represented well by the two-dimensional trajectoryVC2 vs
VC1 that spirals around an unstable saddle focus. The p
can also be seen as a two-dimensional oscillator circ
around the same focus.

III. REAL-TIME DETECTION OF PHASE
SYNCHRONIZATION

Taking into account that both the chaotic circuit oscil
tion and the periodic function are basically two-dimensio
rotations, the difference between their phasesDu can be rep-
resented by the stroboscopic mapping of the perturbed
cuit. This is done taking samples at 1/f time intervals, where
f is the frequency of the periodic perturbation. The mo
compact the stroboscopic map, the less the variation of
phase difference. We say that the perturbed circuit is ph
synchronized with its perturbation if the stroboscopic m
remains constrict within a limited region of the attracto
Thus, for the sake of the present work, we consider the
cuit to be phase synchronized with the perturbation if
stroboscopic map does not fill out all the region of the ph
space in which the attractor lives in. In order to detect ph
synchronization, we have to check whether the strobosc
mapping on the variablesVC1 and VC2, sampled at fre-
quencyf, is confined into a subregion of the projection of t
chaotic attractor on the planeVC1 vs VC2. The characteristic
frequency of the unperturbed circuit isf 055.264 kHz. We
start the search for phase synchronized states by strobos
cally sampling the unperturbed Chua at frequencyf 5 f 0.
This is equivalent to starting with the pacer at frequencf
5 f 0 and amplitudeV. The result is depicted in Figs. 2
where in~a! f 5 f 0 andV50.695 mV. This amplitude value
is not enough to produce phase synchronization so the po
of the stroboscopic mapping, represented as open circles
spread all over the attractor~pictured as a continuous circlin
gray line!. As we increase the amplitude of the perturbati
to, sayV51.046 mV, while maintaining the frequency atf
5 f 0, phase synchronization is attained, as indicated in F
2~b!. In this case, the stroboscopic mapping is confined t
subregion of the attractor, and remains there for all time.
higher amplitude of perturbation (V52.33 mV), the strobo-
scopic mapping becomes more concentrated@see Fig. 2~c!#
showing that the synchronization robustness increases
the amplitude of perturbation. Figure 3 illustrates the para
eter space ofV3 f , showing the triangular shaped area f
which there is phase synchronization. We apply the te
nique described above for detecting whether or not ph
synchronization occurs for a range of values of the amplit
V and the frequencyf of the perturbation. We use 15 strob
scopic mappings with'6000 points each, for each value
V and f. The result is presented in Fig. 3, where the fill
squares correspond toV andf values yielding phase synchro
nized states. The circle corresponds to the nonsynchron
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state of Fig. 2~a!, and the star and the triangle correspond
the phase synchronized states of Figs. 2~b! and 2~c!, respec-
tively. Notice the different slopes of the two sides of th
tongue, with the curved right-hand side.

FIG. 2. Experimental data with C150.0047mF, C2

50.052mF, R51596V, L59.2 mH, andr 510 V. Gray lines
representVC2 vs VC1 and empty circles represent the strobosco
mapping. In~a! not synchronized withV50.695 mV, in~b! phase
synchronized withV51.046 mV, and in~c! phased synchronized
with V52.33 mV. In all casesf 5 f 055.264 kHz.

FIG. 3. Filled squares represent values of the frequencyf and
the amplitudeV for which the experimental perturbed Chua circu
is phase synchronized with the perturbation. The open circle,
star and the triangle show the parameter space position used in
2~a–c!, respectively.
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IV. SIMULATION

The experimental oscillator of Fig. 1 can be modeled
applying Kirchoff’s laws to the nodes of the circuit. Th
resulting state equations are given byC1(dVC1 /dt)
5(1/R)(VC22VC1)2 i NR(VC1), C2(dVC2 /dt)5(1/R)(VC1
2VC2)1 i L , andL(diL /dt)52VC22y(t), whereVC1 and
VC2 are the voltage across the capacitorsC1 andC2, respec-
tively, andi L is the electric current across the inductorL. For
convenience, we introduce the usual parameter rescaling
produces a set of dimensionless parameters~denoted with the
subscriptr ). We permit a slight modification of the rescale
parameters due to fluctuations in the real experimental
ues. Thus, the parameters used in the numerical simulatio
the circuit of Fig. 1 areC1r50.1, C2r51.0, Lr51/6, 1/Rr
50.575, m0r520.5, m1r520.8, andBpr51.0. The char-
acteristic frequency of the Chua system for these parame
is f 0r50.2807, which corresponds to the main peak in
Fourier spectrum@7#.

Initial testing indicates that phase synchronization can
achieved for lower amplitude values when the frequency
f r50.2801, slightly different from the characteristicf 0r
50.2807. Our result forVr50 is shown in Fig. 4~a!, where
the stroboscopic mapping with sampling interval of 1/0.28
is represented by the open circles plotted on top of the c

FIG. 4. The numerically simulated Chua circuit with dimensio
less variables. The gray lines represent a Ro¨ssler-like attractor,
while the empty circles represent the stroboscopic mappings. In~a!
without perturbation there is no synchronization. In~b! perturbed
with f r50.2801 andVr50.0005 there is sychronization. In~c! for
higher amplitude perturbationVr50.002 the stroboscopic map i
more concentrated.
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tinuous Ro¨ssler-like attractor. As expected, the spread of
mapping around the attractor clearly indicates that the C
oscillator and the sinusoidal function are not phase synch
nized. However, a completely different picture can be se
when we increase the amplitude of the perturbation toVr
50.0005, while keeping the frequency atf r50.2801. In this
case, with the result displayed in Fig. 4~b!, the open circles
of the stroboscopic mapping are restricted to a bounded
gion of the attractor, and stay there for all time. The sa
sampling interval of 1/0.2801 has been applied for the
mappings. We see that without the perturbation there is
phase synchronization due to the phase diffusion of the c
otic Chua. ForVr50.0005, we already obtain phase sy
chronization as it is shown in Fig. 4~b!. As shown for the
experimental data, for higher amplitude of perturbation,Vr
50.002, the simulated stroboscopic map is also more c
centrated@see Fig. 4~c!# confirming that the synchronizatio
robustness increases with the amplitude of perturbation.

In Fig. 5~a!, we show a 3003300 grid in parameter spac
of the perturbation frequencyf r and the perturbation ampli
tude Vr , showing in black square an Arnold-like tongue,
region for which phase synchronization occurs.

FIG. 5. In ~a! the black region represents values of the fr
quency f r and the amplitudeVr for which the numerically simu-
lated perturbed Chua circuit phase synchronizes with the pertu
tion. The open circle, the star and the triangle show the values oVr

and f r used to obtain the data shown in Figs. 4~a–c!, respectively.
In ~b! a zooming view aroundVr50 and f r50.2801 showing the
border of the synchronization tongue. The variables are dimens
less.
2-3
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The open circle, the star and the triangle correspond,
spectively, to the parameter settings of Figs. 2~a–c!. As we
observed in the experimental tongue, see Fig. 3, ther
asymmetry between the left and the right borders of
tongue. In Fig. 5~b!, we present a zooming view aroundVr
50 and f r50.2801 showing a detail of the tip of the syn
chronization tongue.

V. PHASE SYNCHRONIZATION TRANSITION

The transition between phase synchronized and ph
nonsynchronized states has been studied before. The sce
for the loss~or the achieving! of phase synchronization i
equivalent to the loss~or achieving! of phase locking in a
quasiperiodic oscillation, where a saddle-node bifurcat
happens annihilating an attractor~node! and a repeller
~saddle! @2#. In the case of states initially phase synchr
nized, synchronization is lost due to the collision of two se
Depending on the particular system the synchronization lo
ing has also been described as a collision between an
stable set and an attractor@8#, and as a collision between tw
unstable sets@9#. The tongue representing the parameter v
ues for phase synchronization has been studied in associ
with chaotic systems@10#. It is a consequence of the finit
probability of finding a rational periodic oscillation in a pe
turbed oscillator. In this sense, a very small perturbation a
plitude, in connection with the characteristic frequency of
oscillator, is enough to lock the quasiperiodic~or chaotic!
oscillations to the frequency of the forcing function. Th
finding of the Arnold tongue in both our experimental a
simulation Chua circuits clearly indicates that this probab
ity is indeed finite. Other types of electronic circuits produ
ing chaotic wave signals may also be used for transmis
of phase-coded information@11#.

VI. CONCLUDING REMARKS

We have shown experimentally and numerically that
periodically perturbed Ro¨ssler-like chaotic Chua circui
phase synchronizes with the perturbation when the pert
ev
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ing frequency is close to the characteristic frequency of
chaotic oscillator. Robust phase synchronized states
achieved for larger pacing amplitudes, which suggests
oscillators such as the Chua may offer some advantage
information transmission. The Arnold tongues for the expe
ment and the simulation are remarkably similar. In bo
cases, as we travel in theV vs f parameter space, three di
ferent regions can be visited. Take, for example, the Arn
tongue of Fig. 5. Suppose that we start at the left-hand s
nonsynchronized positionf r50.2793,Vr50.001, and move
to the right, increasingf r at constantVr . Eventually, we will
reach the positionf r50.279 85 close to the boundary be
tween synchronization and nonsynchronization regions.
we continue with increasing values off r we cross the bound
ary, enter the region of phase synchronization, continue
reach the vicinity of the other boundary atf r50.280 37. As
we continue, we cross this other boundary and travel agai
nonsynchronization parameter space. Notice that the w
regions to the left and to the right of the Arnold tongu
correspond to parameter space values for nonsynchron
states. However, the left-hand side region corresponds
pacing frequencies lower than the characteristic frequenc
the unperturbed Chua. The right-hand side region co
sponds to pacing frequencies larger than the character
frequency of the unperturbed Chua. In one case the Chu
being forced to slow down, in the other case it is forced
speed up. For parameter values at the center of the ton
going to the left slows the oscillator down, going to the rig
speeds it up. It seems that the chaotic oscillator reacts
exactly in the same way regarding the transition in one
rection, as opposed to the transition in the other directi
These two diverse physical scenarios may account for
differences between the left-hand and right-hand sides of
Arnold tongue in both experimental and simulation cases
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